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Abstract—A primary objective of the NASA Earth-Sun Explo-
ration Technology Office is to understand the observed Earth cli-
mate variability, thus enabling the determination and prediction of
the climate’s response to both natural and human-induced forcing.
We are currently developing a suite of computational tools that will
allow researchers to calculate, from data, a variety of information-
theoretic quantities such as mutual information, which can be used
to identify relationships among climate variables, and transfer en-
tropy, which indicates the possibility of causal interactions. Our
tools estimate these quantities along with their associated error
bars, the latter of which is critical for describing the degree of
uncertainty in the estimates. This work is based upon optimal
binning techniques that we have developed for piecewise-constant,
histogram-style models of the underlying density functions. Two
useful side benefits have already been discovered. The first allows
a researcher to determine whether there exist sufficient data to es-
timate the underlying probability density. The second permits one
to determine an acceptable degree of round-off when compressing
data for efficient transfer and storage. We also demonstrate how
mutual information and transfer entropy can be applied so as to
allow researchers not only to identify relations among climate vari-
ables, but also to characterize and quantify their possible causal
interactions.

I. INTRODUCTION

A primary objective of the NASA Earth-Sun Exploration
Technology Office is to understand the observed Earth climate
variability, and determine and predict the climate’s response to
both natural and human-induced forcing. Central to this prob-
lem is the concept of feedback and forcing. The basic idea is
that changes in one climate subsystem will cause or force re-
sponses in other subsystems. These responses in turn feed back
to force other subsystems, and so on. While it is commonly as-
sumed that these interactions can be described by linear systems
techniques, one must appeal to large-scale averages, asymptotic
distributions and central limit theorems to defend such mod-
els. In doing so, our ability to describe processes with rea-
sonably high spatiotemporal resolution is lost in the averaging
step. There are distinct advantages to developing feedback and
forcing models that allow for nonlinearity. This is especially

highlighted by the results of Lorenz’s work in modelling con-
vection cells [1], which is used today as a textbook example
of a nonlinear system, and historically was instrumental in the
development of modern nonlinear dynamics.

In the early stages of a field of science, much effort goes into
identifying the relevant variables. This is typically a small set
of variables that are used as parameters in idealized scientific
models of the physical phenomenon under study. In Galileo’s
time, he found that motion was best described by the relevant
variables: displacement, velocity, and acceleration. Sometimes
these scientific models are gross oversimplifications that merely
capture the basic essence of a physical process, and sometimes
they are highly detailed and allow one to make specific pre-
dictions about the system. In Earth Science, the fact that the
majority of our efforts are spent on amassing large amounts of
data indicates that we have not yet identified the relevant vari-
ables for many of the problems that we study. One of the aims
of this work is to develop methods that will enable us to better
identify relevant variables.

A second aim of this work is to develop techniques that will
allow us to identify relationships among these relevant vari-
ables. As mentioned above, it is naive to expect that these vari-
ables will interact linearly. Thus techniques that are sensitive to
both linear and nonlinear relationships will better enable us to
identify interactions among these variables. Information theory
allows one to compute the amount of information that knowl-
edge of one variable provides about another [2], [3]. Such com-
putations are applicable to both linear and nonlinear relation-
ships between the variables. Furthermore, they rely on higher-
order statistics; whereas approaches such as correlation anal-
ysis, Empirical Orthogonal Functions (EOF), Principal Com-
ponent Analysis (PCA), and Granger causality [4] are based
on second-order statistics, which amount to approximating ev-
erything with Gaussian distributions. An additional benefit is
the fact that higher order generalizations of basic information-
theoretic quantities are deeply connected to the concept of rel-
evance [5], [6], and thus this approach is the natural methodol-
ogy for identifying relevant variables and their interactions with
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Fig. 1. The optimal piecewise-constant probability density model generated
from 1000 data samples drawn from a Gaussian density. The error bars indicate
the uncertainty in the bin heights. It is superimposed over a 100-bin histogram
that shows the irrelevant sampling variations of the data.

one another.
Information-theoretic computations ultimately rely on quan-

tities such as entropy. While researchers have been estimating
entropy from data for years, relatively few attempts have been
made to estimate the uncertainties associated with the entropy
estimates. We consider this to be of paramount importance,
since the degree to which we understand the Earth’s climate
system can only be characterized by quantifying our uncertain-
ties. The remainder of this paper will describe our ongoing
efforts to estimate information-theoretic quantities from data as
well as the associated uncertainties, and to demonstrate how
these approaches will be used to identify relationships among
relevant climate variables.

II. DENSITY MODELS

Our knowledge about a variable depends on what we know
about the values that it can take. For instance, knowing that the
average daytime summer beach water temperature in Hawaii is
80◦F provides some information. However, more information
would be provided by the variance of this quantity. A complete
quantification of our knowledge of this variable would be given
by the probability density function. From that, one can com-
pute the probability that the water temperature will fall within
a given range. To apply these information-theoretic techniques,
we first must estimate the probability density function from a
data set.

A. Piecewise-Constant Density Models

We model the density function with a piecewise-constant
model. Such a model divides the range of values of the variable
into a set of M discrete bins and assigns a probability to each
bin. We denote the probability that a data point is found to be in
the kth bin by πk. The result is closely related to a histogram,
except that the “height” of the bin hk, is the constant proba-
bility density (bin probability divided by the bin width) over
the region of the bin. Integrating this constant probability den-
sity hk over the width of the bin vk leads to a total probability

πk = hkvk for the bin. This leads to the following piecewise-
constant model h(x) of the unknown probability density func-
tion for the variable x

h(x) =
M∑

k=1

hk Π(xk−1, x, xk), (1)

where hk is the probability density of the kth bin with edges
defined by xk−1 and xk, and Π(xk−1, x, xk) is the boxcar func-
tion where

Π(xa, x, xb) =




0 if x < xa

1 if xa ≤ x < xb

0 if xb ≤ x
(2)

For the case of equal bin widths, this density model can be re-
written in terms of the bin probabilities πk as

h(x) =
M

V

M∑
k=1

πk Π(xk−1, x, xk). (3)

where V is the width of the entire region covered by the den-
sity model. This formalism is readily expanded into multiple
dimensions by extending k to the status of a multi-dimensional
index, and using vk to represent the multi-dimensional volume,
with V representing the multi-dimensional volume covered by
the density model.

To accurately describe the density function, we use the
data to compute the optimal number of bins. This is per-
formed by applying Bayesian probability theory [7], [8] and
writing the posterior probability of the model parameters [9],
which are the number of bins M and the bin probabilities
π = {π1, π2, . . . , πM−1},1 as a function of the N data points
d = {d1, d2, . . . , dN}

p(π,M |d, I) ∝
(

M

V

)N Γ
(

M
2

)
Γ
(

1
2

)M
× (4)

π
n1− 1
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1 π
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(
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2
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where nk is the number of data points in the kth bin. Note
that the symbol I is used to represent any prior information that
we may have or any assumptions that we have made, such as
assuming that the bins are of equal width.

Integrating over all possible bin heights gives the marginal
posterior probability of the number of bins given the data [9]

p(M |d, I) ∝
(

M

V

)N Γ
(

M
2

)
Γ
(

1
2

)M

∏M
k=1 Γ(nk + 1

2 )
Γ(N + M

2 )
, (5)

where the Γ(·) is the Gamma function [10, p. 255]. The idea
is to evaluate this posterior probability for all the values of the
number of bins within a reasonable range and select the result
with the greatest probability. In practice, it is often much easier
computationally to search for the optimal number of bins M

1Note that there are only M − 1 bin probability parameters since there is a
constraint that the sum should add to one.
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by finding the value of M that maximizes the logarithm of the
probability, (5) above.

Using the joint posterior probability (4) one can compute the
mean bin probabilities and the standard deviations from the data
[9]. The mean bin probability is

µk = 〈hk〉 =
〈πk〉
vk

=
(

M

V

)(
nk + 1

2

N + M
2

)
, (6)

and the associated variance of the height of the kth bin is

σ2
k =

(
M

V

)2( (nk + 1
2 )(N − nk + M−1

2 )
(N + M

2 + 1)(N + M
2 )2

)
, (7)

where the standard deviation is the square root of the variance.
Note that bins with no counts still have a non-zero probability.
No lack of evidence can ever prove conclusively that an event
occurring in a given bin is impossible—just less probable.

In this way we are able to estimate probability densities from
data, and quantify the uncertainty in our knowledge. An exam-
ple of a probability density model is shown in Figure 1. This
optimal binning technique ensures that our density model in-
cludes all the relevant information provided by the data while
ignoring irrelevant details due to sampling variations. The re-
sult is the most honest summary of our knowledge about the
density function from the given data. Honest representations
are important since they can reveal two potentially disastrous
situations: insufficient data and excessive round-off error.

B. Insufficient Data

Without examining the uncertainties, one can never be sure
that one has a sufficient amount of data to make an inference.
How many data points does one need to estimate a density func-
tion? Do we need 100 data points? 10000? a million?

By examining the log posterior probability for the optimal
number of bins given the data, one can easily detect whether
one possesses sufficient data.2 In this example (Figure 2), we
see two density models constructed from data sampled from a
Gaussian distribution. In the first case, we have collected 30
data points, and in the second case, 1000. In the case of 30 data
points, the behavior of the log posterior probability, which is the
logarithm of (5), is very noisy with spurious maxima. We can
not be sure how many bins to use, and are thus very uncertain as
to the shape of the density function from which these data were
sampled. In the case with 1000 data points, the behavior of
the log posterior is clear. It rises sharply as the number of pro-
posed bins increases and reaches a peak and then gently falls
off. The result is an estimate of the number of bins that pro-
vides a piecewise-constant density model that, given the data,
optimally describes the true “unknown” Gaussian distribution.

In our numerical experiments, we have found that for Gaus-
sian distributed data, one needs approximately 75 to 100 data
points to get a reasonable solution, and 150 to 200 data points

2The uncertainties, error bars or standard deviations are summary quantities
that characterize the behavior of the posterior probability around the optimal
solution. For this reason, rather than computing uncertainties, we simply look
at the log posterior.

Fig. 2. A) With a small number of data points (in this case 30 data points
sampled from a Gaussian), it is not possible to determine the probability density
with any accuracy. B) The log posterior in this case jumps around with many
spurious local maxima. This indicates that the inference is unreliable and more
data are needed. C) With a sufficient amount of data (in this case 1000 data
points), the probability density is easily estimated. D) The log posterior rises
rapidly as the number of bins M increases reaching a peak (in this case at
M = 14) and then falling off gently. E) In this example, we take the previous
1000 data points and rounded them off to the nearest 1/10th. As a result of this
severe truncation, the optimal solution looks like a picket fence. The discrete
nature of the truncated data is now a more prominent feature than the original
probability density function. F) The log posterior detects this once the data
have been separated into the discrete bins and can be separated no further.

to be very certain. Note that this is a different situation than as-
suming that we know that the underlying distribution is Gaus-
sian and then trying to estimate the mean and variance. That
is a very different problem where the prior knowledge that it is
Gaussian (which would be represented by that I again) makes
is feasible to make the inference using significantly fewer data
points.

C. Excessive Round-Off

The other problem that can occur is loss of information due
to data compression or round-off. Many times to save memory
space, data values are truncated to a small number of decimal
places. When it is not clear how much information the data
contains, it is not clear to what degree the data can be truncated
before destroying valuable information. Our optimal binning
technique is useful here as well.

In the event that the data has been severely truncated, the
optimal binning algorithm will see the discrete structure in the
data due as being more meaningful than the overall shape of the
underlying density function (Figure 2E). The result is that the
optimal number of bins leads to what is called “picket fencing”,
where the density model looks like a picket fence. There is no
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graceful way to recover from this—relevant data has been lost,
and cannot be recovered.

III. ENTROPY AND INFORMATION

We can characterize the behavior of a system X by looking
at the set of states the system visits as it evolves in time. If a
state is visited rarely, we would be surprised to find the system
there. We can express the expectation (or lack of expectation)
to find the system in state x in terms of the probability that it
can be found in that state, p(x), by

s(x) = log
1

p(x)
. (8)

This quantity is often called the surprise, since it is large for
improbable events and small for probable ones. Averaging this
quantity over all of the possible states of the system gives a
measure of our expectation of the state of the system

H(X) =
∑
x∈X

p(x) log
1

p(x)
. (9)

This quantity is called the Shannon Entropy, or entropy for
short [2]. It can be thought of as a measure of the amount
of information we possess about the system. It is usually ex-
pressed by rewriting the fraction above using the properties of
the logarithm

H(X) = −
∑
x∈X

p(x) log p(x). (10)

Note that changing the base of the logarithm merely changes
the units in which entropy is measured. When the logarithm
base is 2, entropy is measured in bits, and when it is base e, it
is measured in nats.

If the system states can be described with multiple parame-
ters, we can use them jointly to describe the state of the system.
The entropy can still be computed by averaging over all possi-
ble states. For two subsystems X and Y the joint entropy is

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y). (11)

The differences of entropies are useful quantities. Consider
the difference between the joint entropy H(X,Y ) and the indi-
vidual entropies H(X) and H(Y )

MI(X,Y ) = H(X) + H(Y ) − H(X,Y ). (12)

This quantity describes the difference in the amount of infor-
mation one possesses when one considers the system jointly in-
stead of considering the system as two individual subsystems.
It is called the Mutual Information (MI) since it describes the
amount of information that is shared between the two subsys-
tems. If you know something about subsystem X , the mu-
tual information describes how much information you also pos-
sess about Y , and vice versa. Thus MI quantifies the rele-
vance of knowledge about one subsystem to knowledge about
another subsystem. For this reason, it is useful for identify-
ing and selecting a set of relevant variables that can aid in

the prediction of another climate variable. One should note
that if two climate variables X and Y are independent, then
H(X,Y ) = H(X) + H(Y ), then the mutual information (12)
is zero—as one would expect. The mutual information is a
measure of true statistical independence, whereas concepts like
decorrelation only describe independence up to second-order.
Two variables can be uncorrelated, yet still dependent.3

While the mutual information is an important quantity in
identifying relationships between system variables, it provides
no information regarding the causality of their interactions. The
easiest way to see this is to note that the mutual information
is symmetric with respect to interchange of X and Y, whereas
causal interactions are not symmetric. To identify causal in-
teractions, a asymmetric quantity must be utilized. Recently,
Schreiber [11] introduced a novel information-theoretic quan-
tity called the Transfer Entropy (TE). Consider two subsystems
X and Y , with data in the form of two time series of measure-
ments

X = {x1, x2, . . . , xt, xt+1, . . . , xn}
Y = {y1, y2, . . . , ys, ys+1, . . . , yn}

with t = s + l where l is some lag time. The transfer entropy
can be written as

T (Xt+1|Xt, Ys) = I(Xt+1, Ys) − I(Xt,Xt+1, Ys) (13)

where I(Xt+1, Ys) is the rank-2 co-information (mutual in-
formation) and I(Xt,Xt+1, Ys) is the rank-3 co-information,
which describes the information that all three variables share
[12], [6]. Thus the transfer entropy is just the information
shared by Y and future values of X minus the information
shared by Y , X, and future values of X. In this way it captures
the predictive information Y possesses about X and thus is an
indicator of a possible causal interaction. Using the definitions
of these higher-order informations, the TE can be re-written in
the more convenient, albeit less intuitive form, originally sug-
gested by Schreiber [11]

T (Xt+1|Xt, Ys) = (14)

− H(Xt) + H(Xt, Ys) + H(Xt,Xt+1) − H(Xt,Xt+1, Ys),

where H(Xt,Xt+1, Ys) is the joint entropy between the sub-
systems X , Y , and a time-shifted version of X , Xt+1. Unlike
the mutual information, TE is not symmetric with interchange
of X and Y

T (Ys+1|Xt, Ys) = (15)

− H(Ys) + H(Xt, Ys) + H(Ys, Ys+1) − H(Xt, Ys, Ys+1).

This asymmetry is crucial since it is indicative of the ability of
TE to identify causal interactions.

This is the basic outline of the theory, the next section deals
with the practical considerations of estimating these quantities
from data and obtaining error bars to indicate the uncertainties
in our estimates.

3This fact is usually poorly understood and it stems from the confusion be-
tween the common meaning of the word ‘uncorrelated’, which we usually take
to mean “independent”, and the precise mathematical definition of the word
“uncorrelated”, which means that the covariance matrix is of diagonal form.
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Fig. 3. This figure shows the histogram of the entropy samples computed
from the bin probabilities drawn from a Dirichlet distribution defined by the
data. The true entropy falls within one standard deviation of our estimate.

IV. ESTIMATING ENTROPY AND INFORMATION

Given a multi-dimensional data set, we begin by estimating
the number of bins that will provide an optimal probability den-
sity model. With this probability density model in hand, we can
begin computing the information-theoretic quantities described
above. The challenge is to propagate our uncertainties in our
knowledge about the probability density to uncertainties in our
knowledge about the entropy, mutual information, and transfer
entropy estimates.

Say that you have a variable that you know is Gaussian dis-
tributed with zero mean and unit variance, N (0, 1). If you
want to obtain an instance of this variable that is in accordance
with its known Gaussian probability density, you merely need
to sample a point from a Gaussian distribution with zero mean
and unit variance. It is easy to obtain many such instances by
generating many samples, and it is not surprising to find that
the mean and variance of those instances is consistent with the
density from which they were sampled.

We take the same approach here. Given the number of bins
M in the probability density model, the posterior probability (4)
of the bin heights has the form of a Dirichlet distribution. One
can sample the bin heights from the Dirichlet distribution by
sampling each bin height from a gamma distribution with com-
mon scale and shape parameters and renormalizing the resulting
set to unit probability [8, p. 482]. Every set of bin height sam-
ples that is drawn, constitutes a probability density model that
could very well describe the given data. By taking something
on the order of 50, 000 samples, we have a set of 50, 000 prob-
ability density models each of which are probable descriptions
of the data. The fact that we get many different, albeit similar,
density models is a result of the fact that we are uncertain as
to which model is correct. Without an infinite amount of data,
we will always be uncertain—the question is: how uncertain?
By simply computing the mean and variance of the bin heights
from this set of samples, we can confirm that it approaches the
theoretical mean (6), and likewise with the height variance (7).
This sample variance, or its square root—the standard devi-

ation, of the bin heights quantifies our uncertainty about the
probability density.

For each sampled probability density model, we can compute
the entropy. This will be given by (10) for a one-dimensional
density function, by (11) for a two-dimensional density func-
tion, and so on for higher dimensions. The result is a list of
50, 000 or so entropies, from which we can readily compute the
mean and standard deviation thus providing us with an entropy
estimate and an associated standard deviation quantifying our
uncertainty.

In one experiment, 10, 000 data points were sampled from a
Gaussian distribution with zero mean and unit variance. The
optimal number of bins was found to be M = 24. The number
of counts per bin for each of the 24 bins was used to sample
50, 000 probability density models from a Dirichlet distribu-
tion. From each of these samples, the entropy was computed.
Figure 3 shows a histogram of the 50, 000 entropy samples. The
mean entropy was found to be Hest = 1.4231±0.007. The true
entropy, which is Htrue = 1.1489, is within one standard de-
viation of our estimate. This indicates that Hest is a reasonable
estimate of the entropy that simultaneously quantifies our un-
certainty as to its precise value.

The mutual information and transfer entropy are computed
similarly, with the understanding that to compute the mutual in-
formation, one works with two-dimensional density functions,
and for the transfer entropy one works with three-dimensional
densities. Despite the increase in dimensionality, the sam-
pling procedure works exactly as described above for the one-
dimensional case.

V. APPLICATION TO CLIMATE VARIABLES

To demonstrated that the mutual information can identify re-
lationships between climate variables, we performed several
preliminary explorations. In one of our explorations, we con-
sidered the percent cloud cover (computed as a monthly aver-
age) as one subsystem X . These data were obtained from the
International Satellite Cloud Climatology Project (ISCCP) cli-
mate summary product C2 [13], [14], and consisted of monthly
averages of percent cloud cover resulting in a time-series of 198
months of 6596 equal-area pixels each with side length of 280
km. It is best to think of the percent cloud cover at each pixel as
an independent subsystem, say X1,X2, . . . , X6596. The other
subsystem Y was chosen to be the Cold Tongue Index (CTI),

Fig. 4. This figure shows a preliminary mutual information map, which quan-
tifies the relationship between the Cold Tongue Index, which is indicative of the
equatorial Pacific sea surface temperatures, and the Percent Cloud Cover across
the globe.
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Fig. 5. This figure shows the optimal histogram (error bars omitted) of the
joint data formed by combining the Cold Tongue Index time series with the
Percent Cloud Cover time series at the location where the mutual information
was found to be maximal.

which describes the sea surface temperature anomalies in the
eastern equatorial Pacific Ocean (6N-6S, 180-90W)[15]. These
anomalies are known to be indicative of the El Niño Southern
Oscillation (ENSO)[16], [17]. Thus the second subsystem Y
consists of the set of 198 monthly values of CTI, and corre-
sponds in time to the cloud cover subsystems.

The mutual information was computed between X1 and Y ,
and X2 and Y , and so on by using (12). This enables us to
generate a global map of 6596 mutual information calculations
(Figure 4), which indicates the relationship between the Cold
Tongue Index (CTI) and percent cloud cover across the globe.
Note that the cloud cover affected by the sea surface tempera-
ture (SST) variations lies mainly in the equatorial Pacific, along
with an isolated area in Indonesia. The highlighted areas in the
Indian longitudes are known artifacts of satellite coverage.

Pixel 3231, which lies in the equatorial Pacific (1.25N
191.25W), was found to have the greatest mutual information.
Thus cloud cover at this point is maximally relevant to the CTI
and vice versa. By taking the time series representing the per-
cent cloud cover at this position, we can combine this with the
CTI time series to construct an optimal two-dimensional den-
sity model (Figure 5). This density function is not factorable
into the product of two independent one-dimensional density
functions. This indicates that the mutual information is non-
zero (as we had previously determined), and that the two quan-
tities are related in the sense that one variable provides infor-
mation about the other.

We are currently working to sample these density func-
tions from their corresponding Dirichlet distributions to obtain
more accurate estimates of these information-theoretic quanti-
ties along with error bars indicating the uncertainty in our esti-
mates. The end result will be a set of software tools that will al-
low researchers to rapidly and accurately estimate information-
theoretic measures to identify, qualify and quantify causal in-
teractions among climate variables from large climate data sets.
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